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It is well known that proteins control the local environment of
bound metal ion$,and hence their thermodynamic and kinetic
properties, for example, redox potentfélsand transfer rates.
Metallothioneins (MTs) appear to play an important role in Zn
homeostasis and the zinc buffer/distribution systevammalian
MTs contain ZRCys and ZnCys; clusters® and metal exchange
reactions for MTs are usually fasBacterial MTs possess only a
single zinc cluste?,Zn,CysHis; in the case of the cyanobacterial
MT SmtA (Figure 1)%10 We have investigated Zn exchange
reactions of ZgSmtA by a new method using stable isotope
labeling combined with Fourier transform ion cyclotron resonance
mass spectrometry (FT-ICR-MS). We show that the @uoster of
SmtA, in contrast to the structurally analogous cluster of mammalian
MT, contains a kinetically inert Zn site, a feature which can be
related to its secondary and tertiary structure, and which is of
potential importance to its biological function.

Gentle ionization by electrospray (ESI) has previously been
exploited for MTst! and in combination with FT-ICR-MSit is a Figure 1. (A) 3D structure of Zg-SmtA (PDB 1JJD) showing elements
powerful tool for the analysis of metalloproteitisDeconvoluted of secondary structure around site A. The amide proton of Cys32 forms an
ESI-FT-ICR spectra of ZASmtA containing Zn isotopes in natural ]ti-bond' to the 1sulfur of Cys9, which accounts for the extraordinary low-

) ) ) ield shift of its *H resonance (10.01 ppm). The tertiary arrangement of the
abundanc¥ and with 93% enrichmetftwith ®Zn are compared  helix and sheet is further stabilized by the € interaction between Ala37
in Figure 2. The observed experimental masses of the most intenseand Tyr31. (B) The ZiCysHis; cluster of Zn-SmtA.
isotopic peaks in Figure 2A and B (5862.95 and 5868.81 Da,
respectively) are in good agreement with calculated values (5863.00
and 5869.00 Da: deviations of 8.5 and 32 ppm, respectively).

The effects of isotope enrichment are pronounced. Exchange of

all four Zn atoms causes an increase in mass of the most abundant o O i
peak by 6 Da, and the isotopic envelope becomes much narrower T 1.0/B
(Figure 2B). E

To investigate Zn exchange behavior, we incubated natural 2 05
abundance ZaSmtA with ¢’ZnCl, for various time intervals at 310 £
K, removed unbound 2 by rapid gel filtration (ca. 3 min), and 2 oo
analyzed the product by FT-ICR-M8The amount of exchanged s 10
Zn at each time point was determined by comparing the experi- £
mental data to modeled isotope envelopes fog-ZAZn,SmtA 0.5
(x = 1-4, in 0.25 Zn intervals), taking into account the isotopic 0.0

6c7ompositions of both natural abundance Zn andtde-enriched 5855 5360 5365 5870 5875
ZnCIZ.used4v15 (see Figure S2). . ‘ mass (Da)

C_:rUC'a”y' the FT_|CR'MS me_asurgments allow direct determi- Figure 2. Deconvoluted ESI-FT-ICR mass spectra and modeled mass
nation of the metal:protein ratio, without the need for separate envelopes (red circles) of (A) natural abundance-SmtA (first model
measurements of metal and protein concentrations, as is necessargircle is 1 Da below monoisotopic peak), (B) 93%-enricliéths-SmtA,
in radioisotope studies, while simultaneously confirming the identity and (C) Zn-SmtA reacted with a 10-fold molar excess (with respect to
of the intact metatprotein complex. Zn) of 67ZnCl, for 99 h at 310 K, and model for exchange of 2.75 Zn.

We find that initial Zn exchange is fast (ca. 1.4 Zn exchanged
after 1 h, see Figure S3) as expected for metallothion@ihst
most interesting is the extent ®Zn incorporation at equilibrium.

If exchange occurred at all four Zn sites, the maximum achievable

incorporation off’Zn with a 10-fold excess of 93% enriché&n
would be 3.6%7Zn per mol SmtA. We observed a maximum
incorporation of 2.7%7Zn (Figure 2C) after 99 h of incubation,
close to the value of 2.%Zn calculated for exchange at only three
t University of Edinburgh. sites. This implies that one of the four sites in the Ziuster (Figure

* University of Newcastle. 1B) is inert to exchange, a result consistent with our previéid
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Figure 3. Space-filling models showing accessibility of the terminal Cys pubs.acs.org.
and His ligands in sites B, C, and D (Cys S yellow, N blue, O red, C white,
H cyan). Site A is completely buried.
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Figure 4. Low-field region (NH peaks) of théH NMR spectrum of Zp-
SmtA, and 30 and 60 min after reaction with ca. 6 mol equiv of EDTA,
and 2 days after reaction with a further 10 mol equiv of EDTA. Zn removal
was indicated by the decrease in intensity of the ethylene singlet of free
EDTA (6 = 3.256) and appearance of the analogous singlet for [Zn(EBTA)]

(0 = 2.873; Figure Sb).
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